NEDO-NSTDA 2nd Webinar CCUS Technology: A Way to Carbon Neutrality of Thailand

IHI's Solution for Carbon Recycling

March 2023

Dr.Eng. Toshiyuki Suda Program Director for Carbon Solution Corporate Strategy Headquarters

IHI Corporation

IHI Proprietary Information The information contained in this document is IHI Proprietary Information and is disclosed in confidence. It is the property of IHI and shall not be used, disclosed to others or reproduced without the express written consent of IHI. If consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part.

IHI Group Company Profile

Overseas representative offices

63(fiscal 2020) [Subsidiaries: 46 Affiliates: 17]

Overseas affiliates

(fiscal 2020) [Subsidiaries: 121 Affiliates: 22]

Net sales/Revenue

Consolidated net sales/sales revenue (billions of yen)

% IHI adopted International Financial Reporting Standards (IFRS) from fiscal 2020, showing sales based on those sales from fiscal 2019.

Revenue Compostitions by business areas (Consolidated/fiscal 2021)

Resources, Energy & Environment	29%	
Social Infrastructure & Offshore Facilities	14%	
Industrial Systems and General-Purpose Machinery		
Aero Engine, Space & Defense	23%	

Note : The total may not be 100% owing to the exclusion of "Other" and "Adjustments".

IHI's vision "a society that does not depend on fossil fuels for growth"

Carbon Recycling / CCU Technology

Compact reactor

for SMR

Gasification

Conversion to valuable resources Methanation, Olefin production, SAF...

CO₂ Capture: Pilot Plants

20 ton-CO₂/d Pilot Plant Achieved approximately 40% higher energy efficiency

Location	IHI's AIOI Works in Japan	[%]	100	_			Ene Ap	ergy S prox. 4	aving 10%
Source Gas	Flue Gas of Coal-Fired Boiler or Propane Gas Boiler	nsumption	50	_				and	more
Captured CO ₂	20 ton-CO ₂ /d	Jy co						IHI	
CO ₂ Capture Ratio	90%	Enerç	0						
Flue Gas Flow Rate	Max 4,000m ³ N/h-wet	ш		-MEA -Con	A 30 wt ventioi	% nal	IH IH	l Solve I Proce	nt ss
				Proc	ess		IH	l Packi	ng

PICA Pilot Plant

Partially funded by BCIA (Brown Coal Innovation Australia)

PICA (<u>P</u>ost-combustion carbon capture, <u>I</u>HI, <u>C</u>SIRO, <u>A</u>GL)

The 5,000-hour operation successfully completed

Location	Loy Yang A Power plant In Australia
Source Gas	Flue Gas of Coal- Fired Boiler
Captured CO ₂	0.5 t-CO ₂ /d
CO ₂ Capture Ratio	90%
Flue Gas Flow Rate	100 m ³ N/h-wet

-Normal Packing

n capture, <u>I</u>HI, <u>C</u>SIRO, <u>A</u>GL)

20ton-CO₂/d Pilot Plant (Chemical absorption)

Converting CO₂ into valuable chemicals & fuel

Concept

CO₂ is hydrogenated by H₂ from renewable sources to clean fuel such as methane and useful chemicals such as lower olefins as materials for plastics.

Kamata et al., Dispersed and high loading Ni catalyst stabilized in porous SiO₂ matrix for substituted natural gas, Catal. Today 299, 193-200 (2018)

Development of Methanation Catalyst

Confidential IHI

	IHI	General catalyst	
Catalyst	 Ni nanoparticles in core-shell form Ni@SiO2 (Patent No.6203375 : IHI, ISCE²) Small Ni particle size, highly dispersed and independent Porous matrix prevents particles from contacting each other (See Illustration) Porous m Resistant to poisoning and sintering Allowable total sulphur concentration high 	 General catalyst General supported catalysts Ni metal particle size is relatively large a Ni particles are present on the carrier surface Ni easily moves and assembles on the matrix surface of the carrier (See illustration) Low to poisoning and sintering Allowable total sulphur concentration low 	
Evaluation	0	\bigtriangleup	
	Be	fore reaction After reaction	
	IHI – ISCE ² Methanation catalyst	Image: Second	

Comparative catalyst Ni-based methanation catalyst

owth.

Development of Methanation Catalyst

Confidential

Performance comparison under actual gas from gasified coal

- Coal gasification gas: conditions with CO/H2 and poisoning components sulfur, etc. (strict conditions)
- More stable performance than commercial catalysts was confirmed under these actual gas conditions.

Copyright © 2023 IHI Corporation All Rights Reserved.

Reaction Rate

Technical Roadmap for Methanation technology

Lab Scale

~2018

~0.05

Test

2019, Bench Scale test (1.25Nm³-CH₄/h) have been carried out.

2020, Demonstration Scale Test (12.5Nm³-CH₄/h) has been started.

Bench

Scale Test

2019

~1.25

Demonstration

Scale Test

~12.5

2020~

2022, Small methanation system commercialized.

Methan

 (Nm^{3}/h)

Lab Scale Test ~0.05Nm³-CH₄/h (IHI Yokohama Engineering Center)

Bench Scale Test 1.25Nm³-CH₄/h (IHI Yokohama Engineering Center

Scaling up

~Several

Nm³/hr

100

Demo-Scale Test 12.5Nm³-CH₄/h

IHI Methanation System

~Several

10,000

Nm³/hr

Confidential

Mid-scale Demonstration Project (500Nm3/h)

Confidential

Source : <u>https://www.jfe-steel.co.jp/company/pdf/carbon-neutral-strategy_220901_1.pdf</u>

Copyright © 2023 IHI Corporation All Rights Reserved.

CO₂ to Olefin project

Confidential

Japan's New Energy and Industrial Technology Development Organization Commissions IHI to Recycle CO₂ and Develop Olefin Manufacturing Technology -Company to recycle carbon as raw material for plastics and resins-

NEDO commissioned project JPNP16002

-November 11, 2021- Press Release

IHI Corporation announced today that the New Energy and Industrial Technology Development Organization has commissioned it to undertake a research project that it will complete in February 2026. The two R&D themes are to develop catalysts and reactors to synthesize lower olefins (see glossary note 1) and to test exhaust gases at existing crackers and explore integration with existing facilities.

Project's two R&D themes and value chain leveraging existing facilities

Power to X: Soma IHI Green Energy Center

"Local production of renewable energy for local consumption" × "Enhancing resilience to disaster"× "Regional revitalization"

Soma IHI Green Energy Center (SIGC)

Confidential

TH

Blockchain for Environmental Value Distribution

IHI and Fujitsu start joint project on new environmental value distribution platform using blockchain technology

- Apr. 12, 2022 -

Confidential

IHI Corporation (hereinafter IHI) and Fujitsu Limited today announced the launch of a joint project on environmental value trading starting April 1, 2022, with the aim of contributing to the realization of a carbonneutral society and to revitalize the market of environmental value trading ecosystems.

https://www.ihi.co.jp/en/all_news/2022/other/1197835 3498.html

