NEDO-NSTDA 3rd Webinar

Introduction to Chiyoda's Carbon Recycling Activities

Chiyoda Corporation

Contents

- 1. Introduction of Chiyoda
- 2. Chiyoda's Carbon Recycling Activities
 - A) Classification of Carbon Recycling Technologies
 - B) Chiyoda's Carbon Recycling Activities (Summary)
 - C) Post Combustion CO₂ Capture for Gas Turbine (R&D)
 - D) Mineralization (R&D)
 - E) Para-xylene Synthesis (R&D)
 - F) Ethylene Electrochemistry Synthesis (R&D)
 - G) Reformer [CT-CO2AR[™]] using CO₂ as Feedstock (Commercialized)
- 3. Chiyoda's Activities in Thailand

1. Introduction of Chiyoda

Chiyoda's Project Foot Prints

Current Business Portfolio

G	as Value Chain	Petroleum Refineries	Petrochemicals & Chemicals
Gas Proce LNG (Ons – Liquefac – Regasifie – FLNG/Pl – FLNG Po	essing (Onshore/Offshore) hore/Offshore) tion cation atform & Nearshore LNG ower Generation	 Clean Fuel Chemical Refinery Integration Heavy Oil Upgrading CO₂ Capture 	 Olefins Aromatics Synthesis Gas/Fertilizer Methanol Specialty Chemicals
	 Cryogenic Liquefaction LNG Receiving & Cold Energy Utilization CO₂ Capture 		
Green E	nergy Environment	Pharmaceuticals	Metals & Mining General Industry
 Solar Ener Wind Powe Biomass P Generation Energy Sto Energy Ma 	gy • Flue Gas Desulfur er • Energy Conservat ower • CO2 Capture, Stor utilization • CO2 Capture arage/ • CO2 Capture nagement • CO2 Liquefactior	rization • Pharmaceuticals tion • Tissue Engineering (iPS cell) • Laboratories	 Metallurgical Refining and Smelting Electronic Materials Food Processing Vegetable Factory
Systems(B	<u>MS)</u> - CO2 Storage	Chemical Sy	ynthesis Tech. (For CCU)
Hydrogen	/alue Chain	Cata	alyst (For SPERA™)
Jefaction			

2. Chiyoda's Carbon Recycling Activities

Classification of Carbon Recycling Technologies

[Records & Base Technology]

- CO₂ Capture
- Syngas, Hydrogen
- Renewable Energy
- FGD (Chiyoda Technology)

 \bigotimes

[Synergy with Carbon Recycling]

- Chemical products & fuels have synergy with syngas, H2 and renewable energy
- Minerals has synergy with FGD

Made by Chiyoda based on "Roadmap for Carbon Recycling Technology" by Ministry of Economy, Trade and Industry AGR : Acid Gas Removal, DAC : Direct Air Capture,

FGD : Flue Gas Desulphurization, EOR : Enhanced Oil Recovery

Chiyoda's Carbon Recycling Activities (Summary)

- \triangleright Chiyoda's Carbon Capture and Utilization (CCU) business from CO₂ capture to utilization.
- > Chiyoda is aiming to establish a Carbon Recycle Supply Chain in the near future.

Blue Planet: Blue Planet Systems Corporation MOU: Memorandum Of Understanding

CORPORATION

Post Combustion CO₂ Capture for Gas Turbine (R&D)

- Solid sorbent material for low cost CO2 separation and recovery from gas turbines.
- Bench tests and demonstrations to establish low cost processes and lead to early social implementation.
- Funded by NEDO (Green Innovation Fund project).

Press Release: <u>https://www.chiyodacorp.com/media/220513_e.pdf</u>

Mineralization (R&D)

- \succ CO₂ is sequestrated as the mineral, CaCO₃.
- MOU signed with Blue Planet Systems Corporation (a start up company that owns technology in the USA) and Mitsubishi Corporation
- Joint demonstration is ongoing in the USA

Press Release: https://www.chiyodacorp.com/media/210205_e.pdf

SiO₂: Silicon Dioxide, CaCO₃: Calcium Carbonate, CaO: Calcium Oxide

Para-xylene Synthesis (R&D)

- \blacktriangleright Para-xylene synthesis from CO₂ and H₂ (e-PX) to substitute existing fossil fuel-derived chemicals.
- This R&D project is fully funded by NEDO. (Duration: July 2020 to March 2024). Partnership with University of Toyama, Nippon Steel Engineering Co., Ltd., Nippon Steel Corporation, HighChem Company Ltd. and Mitsubishi Corporation
- Started pilot plant operation from March 2022.

Ethylene Electrochemistry Synthesis (R&D)

- > Ethylene production from $CO_2 + H_2O$ by Integrated Electrochemical Systems.
- > Funded by NEDO Moonshot Research & Development Program
- > Duration: Maximum 10 years from August 2020

Reformer [CT-CO2AR[™]] using CO₂ as Feedstock (Commercialized)

- Chivoda has commercialized a reforming catalyst using less H₂O and CO₂ as feedstock
- Synthesis gas with wide range of H_2/CO ratio can be produced.
- This Chivoda technology is currently being used by a chemical company in Japan.

https://www.youtube.com/watch?v=f6TtfF vm-E

60

87

89

92

100

76

80

(Conventional: 100)

3. Chiyoda's Activities in Thailand

Chiyoda's activities in Thailand

MOU for development of CCUS technologies at Coal-Fired Power Plant

- Location: Rayong, Thailand
- Collaboration among BLCP
 Power Limited, Mitsubishi
 Corporation and Chiyoda
- Plan to conduct Feasibility Study for lowering carbon emissions at BLPC's coal-fired power plant, particularly in developing technologies that produce carbon-dioxide-derived chemical and fuels.

MOU signing ceremony at the 5th JTEPD

Chiyoda's activities in Thailand

MOU for the development of Clean Hydrogen/ Ammonia Value Chain

- Location: Southern provinces of Thailand
- Collaboration among EGAT, Mitsui O.S.K Lines, Mitsubishi Thailand Limited and Chiyoda
- Plan to conduct Feasibility Study for the value chain of clean hydrogen/ ammonia including the production, storage, transportation and utilization.

Photo at AZEC Ministerial Meeting

Chiyoda's activities in Thailand

Links (Videos) for more detail about CCUS and Hydrogen

Chiyoda's solution https://www.chiyodacorp.com/en/service/

CO₂ Utilization Catalyst for the Sustainable Future: CT-CO2AR https://www.youtube.com/watch?v=f6TtfF_vm-E

Chiyoda's Way for Future LNG https://www.youtube.com/watch?v=GzgGRIHmtfA

SPERA Hydrogen PV_202006 https://www.youtube.com/watch?v=4umkve6kAAk

For more information, please contact us through

- CHIYODA CORPORATION (our website)
- <u>gx-asia-bd@chiyodacorp.com</u> (E-mail address)

Thank you

